

ENWEX solar

financial solar swaps

What will be traded?

Highly standardized index to trade volumes, transferring weather data into tradable structure

Why was it developed?

Reduced correlation between price and volume risks causing need for new hedging instruments

Participants

Direct marketers, Utilities, Retailer, Municipals, Insurance companies, Hedge fonds

Improvement vs. recent weather derivatives

Complete standardisation to energy market's needs (MWh logics, day ahead settlement, transparent)

How to calculate ENWEX solar, e.g. for Germany

- Base utilisation in % of solar corresponds to price in €, e.g. 15,32% means 15,32€
- Reference locations per market weighted with installed capacities e.g. for Germany per Bundesland

Region	Latitude	Longitude	weight in %
Baden-Württemberg	48,50	9,00	12,6
Bayern	49,00	11,50	27,1
Brandenburg & Berlin	52,50	13,50	8,3
Hessen	50,50	9,00	4,5
Mecklenburg-Vorpommern	53,75	12,50	5,1
Niedersachsen & Bremen	52,50	9,00	8,6
Nordrhein-Westfalen	51,50	7,50	11,1
Rheinland-Pfalz	50,00	7,25	5,7
Sachsen	51,00	13,50	4,3
Sachsen-Anhalt	52,00	11,75	5,8
Schleswig-Holstein & Hamburg	54,25	9,75	3,5
Thüringen	51,00	11,00	3,4

- Price calculated out of hourly grid point forecasts for day ahead (local time) solar radiation
- Weather Model for grid points: ECMWF operational model, 00z update, 0.25° spatial resolution

enwex

How to calculate ENWEX solar, e.g. for Germany

enwex

Step 1: Calculate utilisation per hour and gridpoint along the formula

```
utilisation in % = 1,00 * (0,71 * (x / 1000)) * 100
```

with x = solar radiation in W/qm

Step 2: Spatial weighting along installed capacities delivers countrywide utilisation

=> Hourly index values for ENWEX solar

- Index will also be calculated by the service provider Energy Weather
- Publishing of day ahead hourly and base index at <u>www.enwex.com</u> (12:00 CET)

Use case: Hedge of 1 MW solar against low solar production

Direct marketer with risk to earn less than expected money in cloudy conditions

10 year climate solar base utilisation for August: 13,00% 6.13 Upper 90% Along market values for solar (as of 9.6.23, right side), in August a median solar scenario would allow earnings of 54,50€ per MWh => 13,00% * 54,50€ * 744h = 5.271,24 €/MW 5.68 Upper 75% A low solar scenario with 10% likelihood has a base utilisation of 10,50% 5.45 Median and a market price of 61,30€ => 10,50% * 61,30€ * 744h =4.788,76 €/MW ⇒ reduced earnings by -482,48 €/MW Lower 25% 5.09 Hedging ratio: 482,48€ / (744 * (13,00% -10,50%)) = 0,259 lots / MW \Rightarrow A solar portfolio would currently be hedged against cloudy August Lower 10% 4.83 by selling 0,26 lots ENWEX solar per MW solar capacity

08/01 Market values for Solar August as of 9.6.23. Source: Energy Weather

enwex

Note: The hedge efficiency also depends on the preciseness of the model for market price deltas. This is the downside compared to a (much more expensive!) quanto hegde

ENWEX solar

Summary

- Consequent standardisation of weather towards structures of energy markets
- Allows to hedge PPAs, market values and power positions
- Optimal transparency on calculation and publication of data (incl. free download)
- Usage of weather data only from well credited and independent ECMWF
- In case of acceptance / liquidity, highly scalable concept

=> Instrument to hedge Power volumes without additional costs